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Abstract

The rank and invariants of a general lattice rule conventionally are defined in
terms of the group-theoretic properties of the rule. Here we give a nonabstract
definition of the rank and invariants by exploiting what we term the Sylow
p-decomposition of a lattice rule. This decomposition allows a canonical D — Z
form to be calculated for any lattice rule. A new set of necessary and sufficient
conditions for recognizing a canonical form is given.

1 Introduction

An s-dimensional lattice rule Q(A) is an equal-weight quadrature rule on [0, 1)° of the
form

QNS = £ 3 fx,)

where x1,...,xy are all the points of [0,1)° that belong to an integration lattice A.
An s-dimensional integration lattice is a discrete set of points that is closed under
normal addition and subtraction and that contains the unit lattice Ay as a sublattice.
Here Ag is the familiar lattice consisting of all points x = (@1, x2, ..., ), all of whose
components x; are integers.

It is known [SL89] that every s-dimensional lattice rule may be written in the form

Qf = Qlt, D, 7, s], where

Q[t, D, Z,s] := m i i i f ({Z;Jfl—}) ; (1.1)

J1=1j2=1 Ji=1

here t and d; are positive integers, z; € Ag, and {x} € [0,1)* denotes the vector whose
components are the fractional parts of the components of x. This form is known as
a t-cycle D — Z form of an s-dimensional lattice rule [LK95]. The parameters in
the abbreviation Q[t, D, Z, s] are D, which denotes the ¢ x ¢ diagonal integer matrix
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having positive diagonal elements d;, and Z, which denotes the ¢ x s integer matrix
having rows z;.

The number of distinct quadrature points in a lattice rule is known as the order of

the rule and is denoted by v(Q).

Definition 1.2 The rule form Qlt, D, 7, s] is termed nonrepetitive when the order
t
of Q is v(Q) = l:[ldi-

On the other hand, a D — Z form may be repetitive; that is, the order of the lattice
rule is less than dydy---d;. (One can show that the number of distinct quadrature
points in a repetitive D — Z form is dyds - - - di/k for some integer k > 1.)

A given lattice rule has many nonrepetitive distinct D — 7 forms. In [SL89] a general
partial solution to this problem of nonuniqueness is given. There it is shown that
each lattice rule may be expressed in a nonrepetitive t-cycle D — Z form in which
diy1 | diyi=1,2,...,t—1,and d; > 1 with ¢ < s. Moreover, in such a representation,
the values of t and of d; are unique to the rule () and are called the rank of () and the
invariants of () respectively. Such a form is termed a canonical form. The definitions
given there rely heavily on group theory. In fact, the theory of lattice rules forms
an excellent application of Kronecker’s celebrated group representation theorem; see,
for example, [S86, p. 45 et seq.]. However, the practical problem remains of actually
calculating a canonical form of a general rule given in D — Z form.

In a previous paper [LJ96] we treated prime-power rules, that is, rules whose order,
v(Q), is a power of some prime. For these rules the invariants have a nonabstract
definition that is closely related to the ideas underlying projection regularity (see
[LJ96]). In that less complicated context, a theory was developed that does not rely
on group theory or lattice theory at all. We state here a few key definitions and
results from that paper.

Definition 1.3 Let a prime-power rule () have invariants n; and rank r. Then the
form @ = Q[r, D, Z,s] is termed a canonical form of Q if D = diag{ny,na,...,n,}.
Definition 1.4 The t x t integer matriz D is termed sequential when

dy >dy > - >d; > 1.

Theorem 1.5 A necessary and sufficient condition for a D — Z form of a prime-
power rule to be canonical is that it be nonrepetitive with sequential D.

Theorem 1.6 A necessary and sufficient condition for a D — Z form of a prime-
power rule of order p¥ to be canonical is that D be sequential and the matrix Z be of
full rank modulo p.



For a prime-power rule in nonrepetitive form, it follows from Definition 1.2 that each
d; is a prime power. When D is sequential, this gives d; 41 | d;, and so the invariants
also have this property.

In this paper we exploit the previous work of [LLJ96] on prime-power rules to provide
a corresponding theory for general rules. This is done by means of a nonabstract
manifestation of the Kronecker theorem mentioned above. This allows us to express
the D — Z form of a rule () as a sum of the D — Z forms of the “Sylow p-components”
of the rule ). These Sylow p-components are themselves lattice rules of prime-power
order. Section 2 is devoted to this decomposition, Theorem 2.19 being the key result.

In Section 3 we define the rank and invariants of the general rule in terms of the rank
and invariants of the component rules; we define a canonical form; and we show how
it may be obtained from a general D — Z form. In Section 4, we complete the theory
by providing in Theorem 4.7 a necessary and sufficient condition for a D — Z form to
be canonical.

2 The Sylow p-Component Rule Forms

In this section we introduce notation and algorithmic rules for handling D — Z forms,
and we use these to express a rule form as a sum of Sylow p-component rule forms.
The transformations listed in the following theorem are well known and have been
widely used in previous work such as [SL89] and [SJ94].

Theorem 2.1 The rule Q = Q[t, D, Z, s] given in (1.1) is unaltered if 7 is modified

by applying one of the following transformations or a sequence of them.

(a) Replace z; by (z; for { an integer satisfying ged((,d;) = 1.

(b) Replace z; by z; + d;x for x € Ay.

(c¢) Replace z; by z; + (md;/d;)z; for j #1i, m an integer, and d; | md,.
Other transformations that allow one to change D and Z by consistent row inter-
change, removal of common factors, and removal of redundant rows are listed in

[LJ96]. In this paper we do not use them explicitly. However, two more transforma-
tions are given in Theorem 2.9 below.

We now introduce the sum of lattice rules. This is a simple concept.

Definition 2.2 The sum of two s-dimensional integration lattices Ay and Ay is a
lattice A that comprises all points and only points expressible in the form

X = MXq + AaXo,

where the \; are integers and x; € A;, 1 = 1,2.



Colloquially, A is the smallest lattice that contains both A; and A,.

Definition 2.3 The sum
Q=01+ Q:

of two s-dimensional lattice rules ()1 and @)y is the rule () obtained from the sum of
the corresponding integration lattices for ()1 and ()5.

This definition extends to the sum of more than two lattice rules in an obvious way.
It follows immediately that when

> f(yw), (2.4)

their sum is

(Q2) v(@:
Qf = (@1 +Q2)f = OO ) ) g Z:: ({x; + ¥ }). (2.5)

Lemma 2.6 If () = Q)1 + ()2, then

v(Q) < v(Q1)v(Q2),

with equality being valid if v(Q1) and v(Q2) are relatively prime.

The proof of this result is elementary (and omitted here). In the situation where
there is equality, the sum is a direct sum; the reader is referred to [JS94] or [SJ94,
pp- H3-57] for further details about direct sums in this context.

Lemma 2.7 The sum of two rules having forms Qlty, Dy, Z1, 8] and Qlta, Do, Z3, 8]
respectively, may be expressed in the form Qlis, D3, Z3,s] with t3 = 1 + 1y, D3 =
diag{ D1, Dy}, and

Proof. The result is readily proved by using (1.1), (2.4), and (2.5) with @; =
Q[tl,Dl,Zl,S] and QQ = Q[tQ,DQ,ZQ,S]. O

It is a short step from dealing with the sum of two rules ()1 f and ()2 f to the “sum”
of two forms Qlty, Dy, Z1, s8] and Q[t2, Dy, Z3, s] that represent them. One may re-
express Lemma 2.7 using the following definition.



Definition 2.8 A relation
Qlts, D3, Z3, s = Qlt1, D1, Z1, 5] + Qta, Dy, Z3, s]

is valid if and only if the rules represented satisfy

Qsf = Q1 f +Qaf.

This paper relies heavily on this notation and definition. Each relation of this type
could be verified by expanding each term in the form of (1.1). But this formalism
makes that unnecessary.

We note that, while the sum of two rules is well defined, the sum of two forms is not.
For example, in Lemma 2.7 one could equally well have set D3 = diag{D,, D1} and

7z
e (2)
We present a pair of transformations using this notation.

Theorem 2.9 When m and n are relatively prime,
Q[l,mn,z,s| = Q[l,m,z,s]+ Q[l,n,z, 3] (2.10)

and

Q[l,m,z1,s] + Q[l,n,zy,s] = Q[1,mn, mzy + nzy, s. (2.11)

This notation is convenient for manipulating rule forms. A trivial iterated application
of Lemma 2.7 provides a decomposition of any t-cycle D — Z form into the sum of
l-cycle D — Z forms as follows:

Q[t,D,Z, 5] = Q[lvdlvzlvs] + Q[17d27z275] +oeee Q[lvdtvztvs]v (212)

where, as before, z; denotes the jth row of Z. Further decomposition is possible when
det D has more than one prime factor.

V1,72

Lemma 2.13 Let det D have the prime faclorization det D = py'py* -+ - ple, and let
d; have the prime factor decomposition

d; :p?l”'pgr‘”" ,..pgq,z‘7 1=1,2,....,q. (2.14)
Then

Q[lvdivzivs] = Q[lvprlhyivzivs] + Q[lvpéhyivzivs] +oe Q[lvp’qu’ivzivs]' (215)

Proof. This follows by repeated application of (2.10) above. O
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The reader will notice that when p is prime, Q[1, p", z, s] represents a cyclic rule. The
decompositions (2.12) and (2.15) may be used to express any lattice rule as a sum of
cyclic rules.

These results apply as written in cases in which v;; = 0, giving p%’ = 1. The final
forms may include forms Q[1, 1, z;, s], which may be mcluded or discarded at will.

We now introduce the Sylow p-component of a rule ). This is defined as follows.

Definition 2.16 A point x is of ordern when nx € Ao (and n is the smallest positive
integer for which this is true).

Definition 2.17 The Sylow p-component of a lattice rule () is a lattice rule whose
abscissa set comprises all points of the abscissa set of () that are of order p” for any
nonnegative integer .

This corresponds precisely to the Sylow p-subgroup of a given group, the group ele-
ments being members of the respective abscissa sets. We note some simple standard
properties.

(a) The trivial Sylow p-component with p = 1is Q[1, 1, Z, 5], which represents only
the single point 0, the origin.

(b) When @ is a prime-power rule, it has only one nontrivial Sylow p-component,
which coincides with ().

(¢) When Q = Q[t, D, Z, s], the only nontrivial Sylow p-components are those cor-
responding to any primes p that occur as a factor of det D.

It follows that, using (2.12) and (2.15), we may set

Qlt, D, Z,s) =33 Q[1,p),z5,5] = > 1),

=1 j5=1 71=1

where we have defined a rule S by one of its D — Z forms, namely,

¢
SU) .= > Q[L,pl, 2, s] = Q[t, DY), 7. 5],
=1
with 4 o
D) = diag{dgj),d(z]),. } = diag{p,"",p,/*,...,p;"}. (2.18)

Clearly SU) contains only points that belong to @, and it contains only points of order
p] for various integers 7. No other Sylow p-component contains a point of order p;
for any v, except for the origin. Taken together, these facts establish the following
theorem.



Theorem 2.19 Any rule ) may be expressed as the sum of all its Sylow p-components.
There is a Sylow p;-component SY) for every p; occurring in the prime factor decom-

position of v(Q). When Q = Q[t, D, Z, s], one form for SU) is
S = Q[t, DV, 7, 4], (2.20)

where DY) is given in (2.18).

Note that in this D — Z form of the Sylow p;-component rule, the parameters ¢, Z,
and s are the same as those in the D — Z form for (), and the elements of D) are
obtained from those of D by retaining only the p; component of each element.

This theorem is one of the key results of this paper. It is familiar in a group theory
context. But here we have obtained a simple calculable D — Z representation of the
Sylow p-components without demanding that @) be given in canonical form (see the
next section). It is immediately available given any D — Z representation of ().

In view of Lemma 2.6, we have

Q) =TT (s 221

and, following the notation of (2.14) and (2.18), we have

q
det D = [] det DW. (2.22)

7=1
This leads to the following theorem.

Theorem 2.23 [In the notation of the previous theorem, the form Qt, D, 7. s] is
nonrepetitive if and only if every component form Q[t, DY), Z, 5] is nonrepetitive.

Proof. We exploit (2.21) and (2.22) above. First we note that whether or not any
of these forms are repetitive, we have

Z/(S(j)) < det DY for all j, (2.24)

so 1t follows that , ,
v(Q)=1]] Z/(S(j)) < T det DY) = det D. (2.25)

7=1 7=1

When all the forms for S¢) are nonrepetitive, the relation in (2.24) is an equality. This
produces an equality in (2.25), which shows that the form for @) is also nonrepetitive.
Conversely, if one of the forms for SU) is repetitive, there is one value of j for which
the relation in (2.24) is a strict inequality; this makes the relation in (2.25) a strict
inequality, showing that the form for () is also repetitive. O



3 Canonical Form of a General Lattice Rule

In [LJ96], the rank and invariants for prime-power rules are defined in a nonabstract
manner. Some of their properties are recalled in the introduction. In this section
we exploit these definitions to define the same quantities in the context of a general
lattice rule. The link that enables the broadening of the definition is Theorem 2.19,
which asserts that any rule may be decomposed into a sum

Q= g + 52 4+ §la) (3.1)

of its Sylow pj-components S, j = 1,2,...,¢. Bach component is a prime-power
rule, and its rank and invariants satisfy the sequential and divisibility conditions
mentioned in Theorem 1.5 and the discussion preceding it. Let SV have rank and
invariants

). ngj),ngj) conl), (3-2)

? Y Y s

Here it is convenient to include the trivial invariants, that is,

n»j)zl, i:r(j)+1,...,5. (3.3)

Definition 3.4 The rank and invariants of a general lattice rule () are

2)
e

(1, (2) @ ;19

r = max(r®, rl rDY and n; = ntnt? - on! STy (3.5)

()

where v and ny” are respectively the rank and invariants of the Sylow p;-components

of Q as specified in (3.1), (3.2), and (3.3) above.

This definition comprises a nonabstract realization of a standard definition based on
group theory.

Definition 3.6 Let () have invariants n; and rankr. Then any form Q = Q[r', D, Z, s]
is termed a canonical form of @ if D = diag{ny,na,...,n.}, where r'€r, s|.

Thus, by definition, we see that, as in the case of the simpler prime-power rule, a
canonical D — Z form is one in which the elements of D are the actual invariants of
the rule.

Theorem 3.7 A canonical form Q[r, D, 7, s] has the following properties:

(a) niy1 | ng, e =1,2,...,r = 1;

(b) Qlr, D, Z, s] is nonrepetitive.



Proof. The first property is inherited from the corresponding property for each of
the Sylow p-components through (3.5). The second property may be established as
follows. If Q[r, D, Z, s] were repetitive, the transformations of Theorem 2.1 could be
used to reduce it to a nonrepetitive form Q[r’, D', Z' s] with det D' < det D. For a
nonrepetitive form, v(Q) = det D’; but for a canonical form, det D = v(Q). Since
det D' # det D, it follows that a canonical form cannot be repetitive. O

Corollary 3.8 In a canonical form, z;/n; is semiproper, that is, gcd(Zi, ..., Zis,n;) =
1.
Proof. Suppose z;/n; were not semiproper so that ged(Z;1, ..., Zis,n;) = A for some

A > 1. Then we could replace z; by z. = z;/\ and n; by n’ = n;/\, and so the form
would be repetitive, which contradicts Theorem 3.7. O

Clearly the rank and invariants of any rule () exist and are unique, since the expansion
(3.1) is unique, each component has unique invariants, and these are assembled in
a determinate way in (3.5). It is straightforward to show that every rule @) has a
canonical form. This follows from the existence of concrete realizations of each step
in the definitions.

Theorem 3.9 When Q = Q[r, D, Z, s] is a canonical form of Q, then Q[r, DY, Z. ]

is a canonical form of SV, its Sylow p;-component.

The proof of this result is straightforward and is omitted.

We now describe in detail how a canonical form of a general rule () may be constructed
from any D — Z form. When @ = Q[t, D, Z, s], we first invoke Theorem 2.19 which
asserts that each Sylow p;-component is SW = Q[t, DY), Z, 5] where, as usual, DV
comprises the p;-components of D.

If each DU) is sequential and each DD — Z form is nonrepetitive, the original D — Z
form is already canonical. Otherwise, it is necessary to form a new representation
for SU) that is sequential and nonrepetitive. This can be accomplished by using the
transformations of Theorem 2.1 and the others mentioned just after that theorem. In
[LJ96] a procedure for doing this is given as part of the proof of Theorem 3.7.

When all the Sylow p;-components are in sequential nonrepetitive form, we assemble
them, row by row. It is convenient in this description to provide, for each Sylow p;-
component, an s-cycle D — Z form. One way of doing this is to append an appropriate
number of zero vectors to the Z-matrix and a corresponding identity matrix to D.

The Sylow p;-components, now in the form Q[s, DV, ZU) s]. may be re-expressed as

Z Q[lv Jgj)v Zgj)v 5]'
=1



Since the ordering is immaterial, we may express () in the form

s g iy .
>l olnd .z ).
=1 \7=1
The inner sum may be assembled to give Q[1,d;,%;,s|, where d; = ﬁ Jgj). This
7=1
assembly process may be carried out by making repeated use of the relation (2.11).
We then obtain the rule form for @) given by Q[s, D, 7, s], where D = diag{d;} and
Z1
Zy

NI
I

Zs

Reference to Definition 3.6 confirms that this is a canonical form, with ' = s. The
rank, r, of the rule @ is given by the largest integer ¢ for which d; > 1. Hence, the
form obtained by removing the last s — r rows of Z and making a similar curtailment
to D is also canonical.

4 Recognizing a Canonical Form

Although we can always obtain a canonical form for a lattice rule, it is sometimes dif-
ficult to recognize whether a given form Q[t, D, Z, s] is a canonical form. Of course, a
canonical form has some obvious properties. These appear in the following definition.

Definition 4.1 The form Q[t, D, Z, s] is termed a candidate form if t < s, each z;/d;
is semiproper, and

di+1|di, i:1,2,...,t—1, dt>1
Trivially, a form that is not a candidate form cannot be a canonical form.

Theorem 4.2 When Q = Q[t, D, Z,s] is a candidate form, then Q[r, DY), Z s] is a
candidate form of SU), its Sylow p;-component.

Proof. The sequential property follows from that of ). Since z;/d; is semiproper

and dgj) is a factor of d;, zi/dgj) is also semiproper. O

In Theorem 3.7 and Corollary 3.8 we established that a canonical form satisfies the
conditions to be a candidate form and is, in addition, nonrepetitive. The following
theorem establishes the converse of this statement.

10



Theorem 4.3 A nonrepetitive candidate form is canonical.

Proof. When Q[t, D, Z,s] is nonrepetitive, Q[t, DY, Z, 5], the form for the Sylow
p;-component of @), is also nonrepetitive (Theorem 2.23). When Qlt, D, 7, s] is a
candidate form, the previous theorem shows that Q[t, DU), Z, s] is also. Thus, the
5” of DWW are sequential (Definition 4.1), and since SU) is a prime-power
rule, the element dgj) is the ith invariant of SU). By definition, the ith invariant of Q

18 .
n, = H dgj)
7=1

This coincides with d;, the ¢th element of D. Thus D contains the invariants of (),
and this is the sole condition for Q[t, D, Z, s] to be a canonical form of ). O

elements d

We note two special cases: the ¢ X s matrix Z is termed column-permuted unit upper
triangular (cpuut) when there exist distinct column indices {(1, (2, - - . , Gmin(s,¢) }» Where

¢ €{1,2,...,s}, and

1, when k£ = m,

D = { 0, when k > m,

It follows from [LJ96, Theorem 3.4] that a candidate form in which Z is cpuut is
nonrepetitive.

m=1,2,...,min(s,1).

Corollary 4.4 A candidate form in which 7 is cpuut is a canonical form.

When ¢ = s above, the matrix Z is an example of a unimodular matrix. This is one
in which |det Z| = 1. Any D — Z form in which Z is unimodular is nonrepetitive (see
[LK95, Theorem 2.2]). Thus, in particular, we have the following.

Corollary 4.5 A candidate form in which 7 is unimodular is a canonical form.

We now seek a criterion by which one may recognize whether a candidate form is
in fact a canonical form. Like any other rule form, the candidate form represents a
rule (), which has Sylow p;-components as detailed in Section 2. However, the D — Z
representation SU) = Q[t, DU), Z, s] inherits from D the property that it is sequential.
G) are 1 for i > t@); and

7

Hence there exists a parameter V) such that the elements d
the form may be reduced to

qU) — Q[t(j),D(j), 2(1)73]7 (4.6)

where ZU) is a tU) x s submatrix of Z obtained by removing the final s — ¢\ rows and
DU is a similarly curtailed version of DU). According to Theorem 1.6 a necessary
and sufficient condition for this form to be nonrepetitive is that ZU) be of full rank
modulo p;. And according to Theorem 2.23, the necessary and sufficient condition
for Q[t, D, Z, s] to be nonrepetitive is that all the above forms for SV, j =1,2,...,4¢,
are nonrepetitive. This leads to the following theorem.

11



Theorem 4.7 Let Q[t, D, Z, s] be a candidate form, and let det D require precisely
q distinel primes py,pa,...,p,. Let 19 be the largest index i@ for which d; contains a
factor p;. Then a necessary and sufficient condition for Q[t, D, Z, s] to be a canonical
form of Q is that for j = 1,2,...,q the first tU) rows of Z form a matriz of full rank
modulo p;.

As an example, consider the candidate D — Z form Q[3, D, Z, 3] with

2-31.52 0 0 7 4 8
D= 0 2.5 0|, z=|11 16 1 |. (4.8)
0 0 5 4 8 11
Let us set p; = 2, p, = 3, and ps = 5. Then t() =2+ =1, and t® = 3; and
DWW = diag{2,2,1}, DWW = diag{2,2},
D@ = diag{3*,1,1}, D@ = diag{3*},
D®) = diag{5?, 5,5}, D®) = diag{5?, 5,5},
. 7 4 8 . 100
M) = (1) _
4 ln 161]’ 2% (mod 2) l101]’
70 =[7 18], Z® (mod 3)=[1 1 2],
7 4 8 2 4 3
Z® =111 16 1 |, Z® (mod5)= |1 1 1].
4 8 11 431

It is immediately clear that Z() (mod 2) and Z(?) (mod 3) are of full rank. One may
verify that det Z(®) = 900 = 0 (mod 5). The theorem then asserts that the D — 7
form is not a canonical form. A canonical form of this rule is given in section 5. (The
reader may verify that the D — Z form is canonical if the first row of Z is replaced

by [T 5 8].)
The next result is related to Theorem 3.2 of [L93].

Theorem 4.9 Suppose we have the two candidate forms
Q = Q[t,D,Z,S] and Q/ = Q[t,D/,Z,S]
such that the elements of D satisfy

o e Y2 Vq,i
di=pi"'py" Pt

If the elements of D' satisfy

! Al A2 Ao i
di=py "p2 "y

where
Vo 1, when ~;; > 1,
P10, when v, =0,

then either both candidate forms are canonical or neither is canonical.

12



Proof. In the notation of (4.6), we see from Theorem 4.7 that the requirement is
that certain submatrices of Z, namely, Z(), j =1,2..., ¢, be respectively of full rank
modulo p;. The matrix Z) depends only on the value of t;, which in turn depends
only on which d; have a p; factor and not what the p; factor is. O

Thus, in the example given above, the results about the form being canonical or not
are unchanged when D is altered to any matrix of the form diag{2°13/157 292572 5w}
with aqy > a9 >0, 1 > 0,91 > 72 > 73 > 0, but Z remains as before.

5 Miscellaneous Results

This section contains a few special results that are relevant when s or ¢ is small.
Since they are the basis of no further theory, the proofs, which are not deep, are
omitted. They are all concerned with cases in which a form is altered or reduced
without altering the Z-matrix.

Theorem 5.1 Given a candidate form Q[t, D, Z, s|, the first invariant of the rule )
18 n = dl.

Corollary 5.2 When t =1, a candidate form is a canonical form.

J

g
Lemma 5.3 Let Q[2, D, Z,s] be a candidate form with dy = T[] p/’?. A canonical
=1

form is Q[2,D, Z,s], where dy = dy, dy = ﬁ p}mm_l) with r; = rank Z (mod p;).
7=1

This lemma is an almost trivial consequence of Theorem 4.7. The factor (r; — 1) is
simply a device to remove, from the product, terms for which r; = 1.

Theorem 5.4 Let a prime-power rule S of order p7 have a repetitive D — 7 form
given by Q[t, D, Z,s]. Let Z be of rank t modulo p, where { < 1. Let the t x s matriz
Z obtained from Z by removing the final t —t rows also be of rank t modulo p. Then

S = Ql:t7 D? Z7 8]7
where D = diag{dy, dy,... d;,1,...,1}.
This last result can be useful in cases where, in a D — Z form of a Sylow-p component,
one prefers not to alter Z. Such a situation occurs in the example in the preceding
section. There det Z(® = 0 (mod 5), but the first two rows are linearly independent.

Because, in the example, all three Sylow-p; components can be expressed by using
the same matrix 7, the final canonical form can be expressed in D — Z form in (4.8)

13



by retaining this matrix Z but changing ds from 5 to 1. Then the redundant third

row can be removed, leaving a canonical D — Z form with

2-31.57 0 T 408
D:[ 0 2-5]’ Z:ln 16 1]'
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